US009348694B1

a2 United States Patent

Nassie

US 9,348,694 B1
May 24, 2016

(10) Patent No.:
(45) Date of Patent:

(54) DETECTING AND MANAGING BAD (56) References Cited

COLUMNS

U.S. PATENT DOCUMENTS

(71) Applicant: DENSBITS TECHNOLOGIES LTD.,
Haifa (IL) 4,430,701 A 2/1984 Christian_et al.
4,463,375 A 7/1984 Macovski
(72) Inventor: Amir Nassie, Moshav Salit (IL) iggg:ggg ﬁ g;}ggg Eﬁ;? ot al.
4,777,589 A 10/1988 Boettner et al.
(73) Assignee: AVAGO TECHNOLOGIES (Continued)
GENERAL IP (SINGAPORE) PTE.
LTD., Yishun (SG) OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this Search Report of PCT Patent Application WO 2009/118720 A3, Mar.
patent is extended or adjusted under 35 4, 2010.
U.S.C. 154(b) by 32 days. (Continued)
(21) Appl. No.: 14/050,264 . .
Primary Examiner — John J Tabone, Ir.
(22) Filed: Oct. 9, 2013 (74) Attorney, Agent, or Firm — Reches Patents
(51) Int.Cl (57) ABSTRACT
GO6F 11/10 (2006.01) A system, computer readable medium and a method. The
G11C 29/00 (2006.01) system includes a memory controller that comprises a control
G11C 29/04 (2006.01) circuit and an interface. The memory controller is arranged to
G11C 29/12 (2006.01) receive or generate bad columns information indicative of bad
GO6F 12/02 (2006.01) columns of the NAND flash memory array; wherein the bad
G11C 29/56 (2006.01) columns information has a column resolution. The memory
Gl1IC 29/44 (2006.01) controller is arranged to receive an input data unit to be
(52) US.CL written to the NAND flash memory array; wherein the input
CPC GO6F 11/1068 (2013.01); GOGF 12/0246 data unit comprises bad column mapped data bits that are
(2013.01); G1IC 29/60 (2013.01); G11C 29/04 mapped to flash memory cells that belong to bad columns of
(2013.01); G11C 29/12 (2013.01); G11C the NAND flash memory array. The interface is arranged to
29/56008 (2013.01); G11C 2029/1208 send the input data unit to the NAND flash memory unit;
(2013.01); G11C 2029/4402 (2013.01); G1IC instruct the NAND flash memory unit to write the input data
2029/5606 (2013.01) unit to a first portion of the NAND flash memory array to
(58) Field of Classification Search provide a programmed data unit; send the bad column

CPC ... G11C 29/00; G11C 29/04; G11C 29/12;
G11C 2029/1208; G11C 2029/4402; G11C
29/56008; G11C 2029/5606; GO6F 11/1068;
GOG6F 12/0246
USPC ..o 714/718, 719, 723, 773, 704, 48;
365/200, 201; 711/103

See application file for complete search history.

mapped data bits to the NAND flash memory unit; and
instruct the NAND flash memory unit to write the bad column
mapped data bits to a second portion of the NAND flash
memory array to provide programmed bad column mapped
data bits.

19 Claims, 12 Drawing Sheets

Receiving or genersting bad columns information indicetive of bad columns of « NAND flash
‘memory artay of a NAND flash memory array. 510

| Receiving an fnput data unit to be written t the NAND flash memory armay. 520 |
| Detecting the bad column mapped data bits. 330 |
Sending the input data uni to the NAND flash memoty unit and instructing the NAND flash

memory wnit 0 weise the input data unit o 8 first portion of the NAND flash mermory array to
provide a programmed data unit. S40.

[scnting e b otrnn apped dtebivs 0t NAND s momory wit 530 |

Trstructing the NAND Tlesh miemory Uit to wiife U bed columa raepped data Bis (0 @ second
portion of the NAND flash memory artay to provide programmed bad columa mapped data
bits

Reading the programmed bad column
mapped data bits o provide read bad
column rped data bits. 570

Genetaring an output data wnitin
response to the read data unit and resd
bad cofurmn mapped deta bits, 380

US 9,348,694 B1

Page 2
(56) References Cited 7,191,379 B2 3/2007 Adelmann et al.
7,196,946 B2 3/2007 Chen et al.
U.S. PATENT DOCUMENTS 7,203,874 B2 4/2007 Roohparvar
7,212,426 B2 5/2007 Park
4,866,716 A 9/1989 Weng 7,216,277 B1* 5/2007 Ngaietal. ... 714/733
5,003,597 A 3/1991 Merkle 7,290,203 B2 10/2007 Emma et al.
5,077,737 A 12/1991 Leger et al. 7,292,365 B2 11/2007 Knox _
5,268,866 A * 12/1993 Fengetal. ..occcooorrirern. 365/200 7,301,928 B2 11/2007 Nakabayashi et al.
5,297,153 A 3/1994 Baggen et al. 7,315916 B2 1/2008 Bennett et al.
5,305,276 A 4/1994 Uenoyama 7,388,781 B2 6/2008 Litsyn et al.
5,574,729 A * 11/1996 Kinoshita etal. 714/711 7,395,404 B2 7/2008 Gorobets et al.
5,592,641 A 1/1997 Doyle et al. 7,441,067 B2 10/2008 Gorobets et al.
5,623,620 A 4/1997 Ranjeet Alexis et al. 7443,729 B2 10/2008 Li et al.
5,640,529 A 6/1997 Hasbun 7,450,425 B2 11/2008 Aritome
5,657,332 A 8/1997 Auclair et al. 7,454,670 B2 11/2008 Kim et al.
5,663,901 A 9/1997 Wallace et al. 7,466,575 B2 12/2008 Shalvi et al.
5,724,538 A 3/1998 Morris et al. 7,533,328 B2 5/2009 Alrod et al.
5,729,490 A 3/1998 Calligaro et al. 7,558,109 B2 7/2009 Brandman et al.
5,740,395 A 4/1998 Wells et al. 7,593,263 B2 9/2009 Sokolov et al.
5745418 A 4/1998 Ma et al. 7,610,433 B2 10/2009 Randell et al.
5778430 A 7/1998 Ish et al. 7,613,043 B2 11/2009 Cornwell et al.
5793774 A §/1998 Usui ot al. 7,619,922 B2 11/2009 Lietal.
5,920:578 A 7/1999 Zook et al. 7,697,326 B2 4/2010 Sommer et al.
5,926,409 A 7/1999 Engh et al. 7,706,182 B2 4/2010 Shalvi et al.
5933368 A 8/1999 Ma et al. 7,716,538 B2 5/2010 Gonzalez et al.
5.056.268 A 0/1999 Lee 7,804,718 B2 9/2010 Kim
5,956:473 A 9/1999 Ma et al. 7,805,663 B2 9/2010 Brandman et al.
5,968,198 A 10/1999 Hassan et al. 7,805,664 Bl 9/2010 Yangetal.
5,982,659 A 11/1999 TIrrinki et al. 7,830,711 B2* 112010 Kawamoto et al. 365/185.09
6,011,741 A 1/2000 Wallace et al. 7,844,877 B2 11/2010 Litsyn et al.
6,016,275 A 1/2000 Han 7,911,848 B2 3/2011 Eunetal.
6,038,634 A 3/2000 i et al. 7,961,797 Bl 6/2011 Yangetal.
6,081,878 A 6/2000 Estakhri et al. 7,975,192 B2 7/2011 Sommer et al.
6,094,465 A 7/2000 Stein et al. 8,020,073 B2 9/2011 Emma et al.
6,119,245 A 9/2000 Hiratsuka 8,108,590 B2 1/2012 Chow et al.
6,182,261 Bl 1/2001 Haller et al. 8,122,328 B2~ 22012 Liuetal
6,192,497 Bl 2/2001 Yangetal. 8,159,881 B2 4/2012 Yang
6,195,287 Bl 2/2001 Hirano 8,190,961 Bl ~ 52012 Yangetal.
6,199,188 Bl 3/2001 Shen et al. 8,250,324 B2 82012 Haas etal.
6 209’1 14 Bl 3/2001 Wolf et al. 8,300,823 B2 10/2012 Bojinov et al.
6.259.627 Bl 7/2001 Wong 8,305,812 B2 11/2012 Levyetal.
6,272,052 Bl 8/2001 Miyauchi 8,327,246 B2 12/2012 Weingarten et al.
6,278,633 Bl 8/2001 Wong et al. 8,407,560 B2 3/2013 Ordentlich et al.
6.279.133 Bl 8/2001 Vafai et al. 8,417,893 B2 4/2013 Khmelnitsky et al.
6301.151 Bl 10/2001 Engh etal. 8,526,238 B2* 9/2013 Moschiano etal. ... 365/185.22
6.370.061 Bl 4/2002 Yachareni et al. 8,711,625 B2* 4/2014 Lietal. ... 365/185.09
6374383 Bl 4/2002 Weng 2001/0034815 Al 10/2001 Dugan et al.
6.504.891 Bl 1/2003 Chevallier 2002/0063774 Al 5/2002 Hillis et al.
6.532.160 Bl 3/2003 Mann et al. 2002/0085419 Al 7/2002 Kwon et al.
6,532,556 Bl 3/2003 Wong etal. 2002/0154769 Al 10/2002 Petersen et al.
6.553.533 B2 4/2003 Demura et al. 2002/0156988 Al 10/2002 Toyama et al.
6,560,747 Bl 5/2003 Weng 2002/0174156 A1 11/2002 Birru et al.
6,637,002 Bl 10/2003 Weng et al. 2003/0014582 Al 1/2003 Nakanishi
6.639.865 B2 10/2003 Kwon 2003/0053142 Al* 3/2003 Wengender 358/437
6.674.665 Bl 1/2004 Mann et al. 2003/0065876 Al 4/2003 Lasser
6675281 Bl 1/2004 Oh etal. 2003/0101404 A1 5/2003 Zhao et al.
6,704,902 Bl 3/2004 Shinbashi et al. 2003/0105620 Al ~ 6/2003 Bowen
6.751.766 B2 6/2004 Guterman et al. 2003/0133340 ALl™* 7/2003 Lee ..cccoovvvvvvvcininnene 365/200
6.772.274 Bl 8/2004 Estakhri 2003/0177300 A1 9/2003 Leeetal.
6781910 B2 82004 Smith 2003/0192007 Al 10/2003 Miller et al.
6’792’569 B2 9/2004 Cox et al. 2003/0221144 Al* 112003 Shimadaetal. 714/710
6.873.543 B2 3/2005 Smith et al. 2004/0015771 Al 1/2004 Lasser et al.
6,891’768 B2 5/2005 Smith et al. 2004/0030971 Al 2/2004 Tanaka et al.
6,9 14,809 B2 7/2005 Hilton et al. 2004/0059768 Al 3/2004 Denk et al.
6,915:477 B2 7/2005 Gollamudi et al. 2004/0062135 Al* 4/2004 Ttakura ... 365/232
6,952,365 B2 10/2005 Gonzalez et al. 2004/0080985 Al 4/2004 Chang etal.
6.961.800 B2 11/2005 Smith 2004/0153722 Al 8/2004 Lee
6.968.421 B2 11/2005 Conley 2004/0153817 Al 8/2004 Norman et al.
6,990,012 B2 1/2006 Smith et al. 2004/0181735 Al 9/2004 Xin
6,996,004 Bl 2/2006 Fastow et al. 2004/0203591 Al 10/2004 Lee
6,999,854 B2 2/2006 Roth 2004/0210706 Al 10/2004 Inetal
7,010,739 Bl 3/2006 Feng et al. 2005/0013165 Al 1/2005 Ban
7,012,835 B2 3/2006 Gonzalez et al. 2005/0018482 Al 1/2005 Cemea et al.
7,038,950 Bl 5/2006 Hamilton et al. 2005/0083735 Al 4/2005 Chen et al.
7,068,539 B2 6/2006 Guterman et al. 2005/0117401 Al 6/2005 Chen et al.
7,079,436 B2 7/2006 Perner et al. 2005/0120265 Al 6/2005 Pline et al.
7,149,950 B2 12/2006 Spencer et al. 2005/0128811 Al 6/2005 Kato et al.
7,177,977 B2 2/2007 Chen et al. 2005/0138533 Al 6/2005 Le Bars et al.
7,188,228 Bl 3/2007 Chang et al. 2005/0144213 Al 6/2005 Simkins et al.

US 9,348,694 B1

Page 3
(56) References Cited 2008/0250195 A1 10/2008 Chow et al.
2008/0263262 Al 10/2008 Sokolov et al.
U.S. PATENT DOCUMENTS 2008/0282106 Al 11/2008 Shalvi et al.
2008/0285351 Al 11/2008 Shlick et al.
2005/0144368 Al 6/2005 Chung et al. 2008/0301532 Al 12/2008 Uchikawa et al.
2005/0169057 Al 8/2005 Shibata et al. 2009/0024905 Al 1/2009 Shalvi et al.
2005/0172179 Al 8/2005 Brandenberger ot al. 2009/0027961 Al 1/2009 Park et al.
2005/0213393 Al 9/2005 Lasser 2009/0043951 Al 2/2009 Shalvi et al.
2005/0243626 Al 11/2005 Ronen 2009/0046507 Al 2/2009 Aritome
2006/0059406 Al 3/2006 Micheloni et al. 2009/0072303 A9 3/2009 Prall etal.
2006/0059409 Al 3/2006 Lee 2009/0091979 Al 4/2009 Shalvi
2006/0064537 Al 3/2006 Oshima 2009/0103358 Al 4/2009 Sommer et al.
2006/0101193 Al 5/2006 Murin 2009/0106485 Al 4/2009 Anholt
2006/0171202 A1* 82006 Kawamoto et al. ... 365/185.17 2009/0113275 Al 4/2009 Chen el al.
2006/0195651 Al 8/2006 Estakhri et al. 2009/0125671 Al 5/2009 Flynn et al.
2006/0203587 Al 9/2006 Lietal. 2009/0132755 Al 52009 Radke
2006/0221692 Al 10/2006 Chen 2009/0144598 Al 6/2009 Yoon et al.
2006/0248434 Al 11/2006 Radke et al. 2009/0144600 Al 6/2009 Perlmutter et al.
2006/0256631 Al* 11/2006 Nobunaga et al. 365/201 2009/0150599 Al 6/2009 Bennett
2006/0268608 Al 11/2006 Noguchi et al. 2009/0150748 Al 6/2009 Egner et al.
2006/0282411 Al 12/2006 Fagin et al. 2009/0157964 Al 6/2009 Kasorla et al.
2006/0284244 Al 12/2006 Forbes et al. 2009/0158126 Al 6/2009 Perlmutter et al.
2006/0294312 Al 12/2006 Walmsley 2009/0168524 Al 7/2009 Golov et al.
2007/0025157 Al 2/2007 Wan et al. 2009/0187803 Al 7/2009 Anbholt et al.
2007/0063180 Al 3/2007 Asano et al. 2009/0199074 Al 82009 Sommer
2007/0081388 Al 4/2007 Joo 2009/0213653 Al 8/2009 Perlmutter et al.
2007/0098069 Al 5/2007 Gordon 2009/0213654 Al 8/2009 Perlmutter et al.
2007/0103992 Al 5/2007 Sakui et al. 2009/0228761 Al 9/2009 Perlmutter et al.
2007/0104004 Al 5/2007 So et al. 2009/0240872 Al 9/2009 Perlmutter et al.
2007/0109858 Al 5/2007 Conley et al. 2009/0282185 Al 112009 Van Cauwenbergh
2007/0124652 Al 5/2007 Litsyn et al. 2009/0282186 Al 11/2009 Mokhlqsi et al.
2007/0140006 A1 6/2007 Chen et al. 2009/0287930 Al 11/2009 Nagaraja
2007/0143561 Al 6/2007 Gorobets 2009/0300269 Al 12/2009 Radke et al.
2007/0150694 Al 6/2007 Chang et al. 2009/0323942 Al 12/2009 Sharon et al.
2007/0168625 Al 7/2007 Cornwell et al. 2010/0005270 Al 1/2010 Jiang
2007/0171714 Al 7/2007 Wu et al. 2010/0025811 Al 2/2010 Bronner et al.
2007/0171730 Al 7/2007 Ramamoorthy et al. 2010/0030944 Al 2/2010 Hinz
2007/0180346 Al 8/2007 Murin 2010/0058146 Al 3/2010 Weingarten et al.
2007/0223277 Al 9/2007 Tanaka et al. 2010/0064096 Al 3/2010 Weingarten et al.
2007/0226582 Al 9/2007 Tang etal. 2010/0088557 Al 4/2010 Weingarten et al.
2007/0226592 Al 9/2007 Radke 2010/0091535 Al 4/2010 Sommer et al.
2007/0228449 Al 10/2007 Takano et al. 2010/0095186 Al 4/2010 Weingarten
2007/0253249 Al 11/2007 Kanget al. 2010/0110787 Al 5/2010 ShalV! et al.
2007/0253250 Al 11/2007 Shibata et al. 2010/0115376 Al 5/2010 Shalvi et al.
2007/0255982 AL* 11/2007 AdSitt ...cooeeerrrvevrrre. 714/718 2010/0122113 Al 52010 Weingarten et al.
2007/0263439 Al 11/2007 Cornwell et al. 2010/0124088 Al 52010 Shalvi et al.
2007/0266291 Al 11/2007 Toda et al. 2010/0131580 Al 5/2010 Kanter et al.
2007/0271494 Al 11/2007 Gorobets 2010/0131806 Al 5/2010 Weingarten et al.
2007/0297226 Al 12/2007 Mokhlesi 2010/0131809 Al 522010 Katz
2008/0010581 Al 1/2008 Alrod et al. 2010/0131826 Al 5/2010 Shalvi et al.
2008/0028014 Al 1/2008 Hilt et al. 2010/0131827 Al 5/2010 Sokolov et al.
2008/0049497 Al 2/2008 Mo 2010/0131831 Al 5/2010 Weingarten et al.
2008/0055989 Al 3/2008 Lee et al. 2010/0146191 Al 6/2010 Katz
2008/0082897 Al 4/2008 Brandman et al. 2010/0146192 Al 6/2010 Weingarten et al.
2008/0092026 Al 4/2008 Brandman et al. 2010/0149881 Al 6/2010 Lee etal.
2008/0104309 Al 5/2008 Cheon et al. 2010/0172179 Al 7/2010 Gorobets et al.
2008/0112238 Al 5/2008 Kim et al. 2010/0174853 Al 7/2010 Leeetal.
2008/0116509 Al 5/2008 Harari et al. 2010/0180073 Al 7/2010 Weingarten et al.
2008/0126686 Al 5/2008 Sokolov et al. 2010/0199149 Al 82010 Weingarten et al.
2008/0127104 AL* 5/2008 Lietal .coocooormeimoisiiniis 717/126 2010/0211724 Al 82010 Weingarten
2008/0128790 Al 6/2008 Jung 2010/0211833 Al 8/2010 Weingarten
2008/0130341 Al 6/2008 Shalvi et al. 2010/0211856 Al 82010 Weingarten
2008/0137413 Al 6/2008 Kong et al. 2010/0241793 Al 9/2010 Sugimoto et al.
2008/0137414 Al 6/2008 Park et al. 2010/0246265 Al 9/2010 Moschiano et al.
2008/0141043 Al 6/2008 Flynn etal. 2010/0251066 Al 9/2010 Radke
2008/0148115 Al 6/2008 Sokolov et al. 2010/0253555 Al 10/2010 Weingarten et al.
2008/0158958 Al 7/2008 Sokolov et al. 2010/0257309 Al 10/2010 Barsky et al.
2008/0159059 Al 7/2008 Moyer 2010/0269008 Al 10/2010 Leggette et al.
2008/0162079 Al 7/2008 Astigarraga et al. 2010/0293321 Al 11/2010 Weingarten
2008/0168216 Al 7/2008 Lee 2010/0318724 Al 12/2010 Yeh
2008/0168320 Al 7/2008 Cassuto et al. 2011/0040924 Al* 2/2011 Selingerccccoevenne. 711/103
2008/0181001 Al 7/2008 Shalvi 2011/0041005 Al* 2/2011 Selinger 714/6
2008/0198650 Al 8/2008 Shalvi et al. 2011/0041039 Al* 2/2011 Hararietal. 714/773
2008/0198652 Al 8/2008 Shalvi et al. 2011/0051521 Al 3/2011 Levyetal.
2008/0201620 Al 8/2008 Gollub 2011/0055461 Al 3/2011 Steiner et al.
2008/0209114 Al 8/2008 Chow et al. 2011/0093650 Al 4/2011 Kwon et al.
2008/0219050 Al 9/2008 Shalvi et al. 2011/0096612 Al 4/2011 Steiner et al.
2008/0225599 Al 9/2008 Chae 2011/0099460 Al 4/2011 Dusija et al.
2008/0244340 ALl™* 10/2008 DOi .ccocovvvvvvvveiienee 714/711 2011/0119562 Al 5/2011 Steiner et al.

US 9,348,694 B1
Page 4

(56) References Cited
U.S. PATENT DOCUMENTS

2011/0153919 Al
2011/0161775 Al
2011/0194353 Al*
2011/0209028 Al
2011/0214029 Al
2011/0214039 Al
2011/0246792 Al
2011/0246852 Al
2011/0252187 Al
2011/0252188 Al
2011/0271043 Al
2011/0302428 Al
2012/0001778 Al
2012/0005554 Al
2012/0005558 Al
2012/0005560 Al
2012/0008401 Al
2012/0008414 Al
2012/0017136 Al
2012/0051144 Al
2012/0063227 Al
2012/0066441 Al
2012/0110250 Al
2012/0124273 Al
2012/0246391 Al

6/2011 Sabbag
6/2011 Weingarten
8/2011 Hwangetal. 365/185.19
8/2011 Post et al.
9/2011 Steiner et al.
9/2011 Steiner et al.
10/2011 Weingarten
10/2011 Sabbag
10/2011 Segal et al.
10/2011 Weingarten
11/2011 Segal et al.
12/2011 Weingarten
1/2012 Steiner et al.
1/2012 Steiner et al.
1/2012 Steiner et al.
1/2012 Steiner et al.
1/2012 Katz et al.
1/2012 Katz et al.
1/2012 Ordentlich et al.
3/2012 Weingarten et al.
3/2012 Weingarten et al.
3/2012 Weingarten
5/2012 Sabbag et al.
5/2012 Goss et al.
9/2012 Meir et al.

2012/0294094 Al* 11/2012 Lingetal. 365/189.02

2012/0294100 Al* 11/2012 Lingetal.cccovv. 365/200

2013/0314992 Al* 11/2013 Takagiwa . .. 365/185.09

2013/0329494 Al* 12/2013 Shirakawa 365/185.09

2014/0250348 Al* 9/2014 Hararietal. 714/773
OTHER PUBLICATIONS

Search Report of PCT Patent Application WO 2009/095902 A3, Mar.
4,2010.

Search Report of PCT Patent Application WO 2009/078006 A3, Mar.
ASLeezli)clhoI'{epon of PCT Patent Application WO 2009/074979 A3, Mar.
As‘;i?clllof{epon of PCT Patent Application WO 2009/074978 A3, Mar.
As‘;i?clllof{epon of PCT Patent Application WO 2009/072105 A3, Mar.
As‘;i?clllof{epon of PCT Patent Application WO 2009/072104 A3, Mar.
As‘;i?clllof{epon of PCT Patent Application WO 2009/072103 A3, Mar.
ASLeezli)clhoI'{epon of PCT Patent Application WO 2009/072102 A3, Mar.
ASLeezli)clhoI'{epon of PCT Patent Application WO 2009/072101 A3, Mar.
As‘;i?clllof{epon of PCT Patent Application WO 2009/072100 A3, Mar.
As‘;i?clllof{epon of PCT Patent Application WO 2009/053963 A3, Mar.
As‘;i?clllof{epon of PCT Patent Application WO 2009/053962 A3, Mar.
As‘;i?clllof{epon of PCT Patent Application WO 2009/053961 A3, Mar.
ASLeezli)clhoI'{epon of PCT Patent Application WO 2009/037697 A3, Mar.
#ai(l) l(g)flen, Kcshab K. Parhi, “Small Area Parallel Chien Search
Architectures for Long BCH Codes”, Ieee Transactions on Very
Large Scale Integration(VLSI) Systems, vol. 12, No. 5, May 2004.

Yuejian Wu, “Low Power Decoding of BCH Codes”, Nortel Net-
works, Ottawa, Ont., Canada, in Circuits and systems, 2004. ISCAS
’04. Proceeding of the 2004 International Symposium on Circuits and
Systems, published May 23-26, 2004, vol. 2, pp. I1-369-72 vol. 2.
Michael Purser, “Introduction to Error Correcting Codes”, Artech
House Inc., 1995.

Ron M. Roth, “Introduction to Coding Theory”, Cambridge Univer-
sity Press, 2006.

Akash Kumar, Sergei Sawitzki, “High-Throughput and Low Power
Architectures for Reed Solomon Decoder”, (akumar at tue.nl,
Eindhoven University of Technology and sergei.sawitzki at philips.
com), Oct. 2005.

Todd K.Moon, “Error Correction Coding Mathematical Methods and
Algorithms”, A John Wiley & Sons, Inc., 2005.

Richard E. Blahut, “Algebraic Codes for Data Transmission”, Cam-
bridge University Press, 2003.

David Esseni, Bruno Ricco, “Trading-Off Programming Speed and
Current Absorption in Flash Memories with the Ramped-Gate Pro-
gramming Technique”, Ieee Transactions on Electron Devices, vol.
47, No. 4, Apr. 2000.

Giovanni Campardo, Rino Micheloni, David Novosel, “VLSI-De-
sign of Non-Volatile Memories”, Springer Berlin Heidelberg New
York, 2005.

John G. Proakis, “Digital Communications”, 3rd ed., New York:
McGraw-Hill, 1995.

J.M. Portal, H. Aziza, D. Nee, “EEPROM Memory: Threshold Volt-
age Built in Self Diagnosis”, ITC International Test Conference,
Paper 2.1, Feb. 2005.

JM. Portal, H. Aziza, D. Nee, “EEPROM Diagnosis Based on
Threshold Voltage Embedded Measurement”, Journal of Electronic
Testing: Theory and Applications 21, 33-42, 2005.

G. Tao, A. Scarpa, J. Dijkstra, W. Stidl, F. Kuper, “Data retention
prediction for modern floating gate non-volatile memories”, Micro-
electronics Reliability 40 (2000), 1561-1566.

T. Hirncno, N. Matsukawa, H. Hazama, K. Sakui, M. Oshikiri, K.
Masuda, K. Kanda, Y. Itoh, J. Miyamoto, “A New Technique for
Measuring Threshold Voltage Distribution in Flash EEPROM
Devices”, Proc. IEEE 1995 Int. Conference on Microelectronics Test
Structures, vol. 8, Mar. 1995.

Boaz Eitan, Guy Cohen, Assaf Shappir, Eli Lusky, Amichai Givant,
Meir Janai, Ilan Bloom, Yan Polansky, Oleg Dadashev, Avi Lavan,
Ran Sahar, Eduardo Maayan, “4-bit per Cell NROM Reliability”,
Appears on the website of Saifun.com , 2005.

Paulo Cappelletti, Clara Golla, Piero Olivo, Enrico Zanoni, “Flash
Memories”, Kluwer Academic Publishers, 1999.

JEDEC Standard, “Stress-Test-Driven Qualification of Integrated
Circuits”, JEDEC Solid State Technology Association. JEDEC Stan-
dard No. 47F pp. 1-26, Dec. 2007.

Dempster, et al., “Maximum Likelihood from Incomplete Data via
the EM Algorithm”, Journal of the Royal Statistical Society. Series B
(Methodological), vol. 39, No. 1 (1997), pp. 1-38.

Mielke, et al., “Flash EEPROM Threshold Instabilities due to Charge
Trapping During Program/Erase Cycling”, IEEE Transactions on
Device and Materials Reliability, vol. 4, No. 3, Sep. 2004, pp. 335-
344.

Daneshbeh, “Bit Serial Systolic Architectures for Multiplicative
Inversion and Division over GF (2)”, A thesis presented to the Uni-
versity of Waterloo, Ontario, Canada, 2005, pp. 1-118.

Chen, Formulas for the solutions of Quadratic Equations over GF (2),
IEEE Trans. Inform. Theory, vol. IT-28, No. 5, Sep. 1982, pp. 792-
794.

Berlekamp et al., “On the Solution of Algebraic Equations over Finite
Fields”, Inform. Cont. 10, Oct. 1967, pp. 553-564.

* cited by examiner

U.S. Patent

May 24, 2016

Sheet 1 of 12

0
o
~
. I
\ o
\>(V//
N, =
T ~
=
o — h
(O~ O
< T ©
e
/] bl
| /////
[(coco
/ T 0
bl
e ~—
T <
i
o — ~
M~ e
= TTe— ®
~ ~
1 ///// ~—
N T
o (—0O O
~ \\\\
| T
| —— o
5, ~
a T ~—
(/\/P — O
\\\\\ -~
- -—
- - -—
W
~ g
o \\\\\
2

PRIOR ART

US 9,348,694 B1

FIG. 1

U.S. Patent

May 24, 2016

Sheet 2 of 12

202 - 203

212

A

213

211

PRIOR ART

US 9,348,694 B1

FIG. 2

U.S. Patent May 24, 2016 Sheet 3 of 12 US 9,348,694 B1

Column 32(1)

- Column 32(q) Column 32(Q) --.
r— o 33(a) v i A
| | \j s I I
b1 it Line select = Lo
I c I
I | @ I |
Wordline 1 I I | |
| I Vbias —‘ I |
10 I X I
R | | I |
Wordline 2 | | . - I |
31(2) o Vo I
S | \ I
. e I | | \ I |
Wordline 3

I |

32(3) 34
| — 34 [
e | | [I |
	I	
	/	
		I
	I	
Wordline 31 . Vbias	/ b	
32(31) : : o : :		
e	o	
Wordline 32		. I
32 (3?)		Vbias ‘ - »
T		I
	I	
I Ground Select N		
Lo 1 \ sense / .		
	Amp I	
	I	
3@ o		
	AV I	
I) I		
I	Latch Signal	I
	I	
	Latch 36(q)	
	I	
	I I	
I Sampled Threshold I		
LI L1

30

FIG. 3

U.S. Patent

May 24, 2016

Sheet 4 of 12

Sending input data to a NAND flash memory unit that the NAND flash memory
array and instructing the NAND flash memory unit to write input data to the
NAND flash memory array to provide programmed data. 410

Reading from the NAND flash memory array the programmed data to provide
read data. 420

Comparing the input data and the read data to provide column errors statistics at a
column resolution. 430

Defining, by a control circuit, bad columns of the NAND flash memory array in
response to the column error statistics. 440

Responding to the definition of bad columns. 45

Defining an encoding scheme for
data units to be written to the
NAND flash memory array while
constraining a value of bits to be
written to the bad columns to be of
an erase value. 452

Defining a mapping of bits of
codewotds to flash memory cells of
the NAND flash memory unit in
response to locations of the bad
columns. 456

Determining an encoding parameter
in response to the column error
statistics. 458

Receiving, by the control circuit, an
input data unit to be written to the
NAND flash memory array;
generating, by the control circuit,
an updated data unit by adding
dummy bits to the input data unit at
locations that are expected to be
written to bad columns of the
NAND flash memory array;
sending the updated data unit to the
NAND flash memory unit and
instructing the NAND flash
memory unit to write the updated
data unit to the NAND flash
memory array. 454

N
o
o

FIG. 4

US 9,348,694 B1

U.S. Patent May 24, 2016 Sheet 5 of 12 US 9,348,694 B1

Control Circuit 310

| Determination circuit 360 |

| Read circuit 320 |

| Write circuit 33 |

| Memory unit 340 |

| Encoder/decoder 312 |

NAND Interface Unit (NI) 350

NAND flash memory unit 390

| Internal controller 380 |

NAND flash memory array 370

(O8]
o
(@]

FIG.5

US 9,348,694 B1

Sheet 6 of 12

May 24, 2016

U.S. Patent

8¢.l€L

ds

8¢LEL

9'91d

09 SpPJOMapoD

pajeuaeouo)
2e|Le|0€|62|8¢|LC 9¢ mNTN g€c|ec|le 0c|61|8L 4L QL|SL L €L{2L|LL|0L glv| € ¢
m wNNN,@NvaN-mNNN_‘Nonrw_‘m_\mrm_‘v_\m_\Nr:‘o_\ 6 v-m [4

U.S. Patent May 24, 2016 Sheet 7 of 12 US 9,348,694 B1

Receiving or generating bad columns information indicative of bad columns of a NAND flash
memory array of a NAND flash memory array. 510

!

Receiving an input data unit to be written to the NAND flash memory array. 520

\
Detecting the bad column mapped data bits. 530

Y

Sending the input data unit to the NAND flash memory unit and instructing the NAND flash
memory unit to write the input data unit to a first portion of the NAND flash memory array to
provide a programmed data unit. 540

L]

Sending the bad column mapped data bits to the NAND flash memory unit. 550

\ 4
Instructing the NAND flash memory unit to write the bad column mapped data bits to a second
portion of the NAND flash memory array to provide programmed bad column mapped data
bits. 560
]

Li

Reading from the first portion of the
NAND flash memory unit the
programmed input data unit to provide a
read data unit. 372

' !

Applying an error correction process on
the read data unit to provide error
correction results and determining

whether to read the programmed bad

1 column mapped data bits in responsc to

Reading the programmed bad column
mapped data bits to provide read bad <—L
column mapped data bits. 370

the error correction results. 574

Generating an output data unit in
responsc to the read data unit and rcad
bad column mapped data bits. 580

00

FIG. 7

U.S. Patent May 24, 2016 Sheet 8 of 12 US 9,348,694 B1
start
| addr o
- »—cnt > CWs
102]
\ 4
106 shift_out
--------------------- > 390
P NAND
shg’t_ln _|—>1 data_bus‘ Flash
340(1) s : / 7 memory
Page 101 data_in] 108 unit
buffer {to Flash) |~ E
105 a\
bad column) T i,
accessed 7—¢
104
103
bem |
+|-
addr 350(1)
210 word_ptr 211(0) bit mask212(0)
word_ptr 211(1)] bit mask212(1)
\ word ptr bit mask
o (o]
3 3
340(2)
[word ptr 2ZTT(X) Tbit mask212(X)

FIG. 8

U.S. Patent

start —

340(1)
Page
buffer

May 24, 2016 Sheet 9 of 12
——P FSM 120 _ ADDR
12 "] setting
122
123 121 130
cnt

US 9,348,694 B1

106 A >
. 402
P shift_in|
shift_out
Vi
401

330(1)
210 —® |word_pir 2171(0) bit mask212(0)
word_ptr 211(1)] bit mask212(1)

\» word_ptr bit mask

(o @]

O O

o o
340(2) [word ptr 2TT(X) [bit mask 212(X)|

320(1

FIG. 9

U.S. Patent

start —

340(1)

Page
buffer

May 24, 2016

Sheet 10 of 12

124

120

123

addr

ADDR
setting

121

cnt

130

106 A

A

[

US 9,348,694 B1

shift_|

in

A

shift_out

402"

110

350(1)

4017

R Y

210

word_ptr 211(0)

bit mask212(0)

word ptr 211(1)

bit mask 212(1)

word_ptr

bit mask

o

00

@]
O
O

[word ptr 211(X) [bit mask 212(X)]

CW(0) 221(0)

SpareBit(0) 222(0)

1Entry 223(0)

CW(1) 221(1)

SpareBit(1) 222(1)

1Entry 223(1)

o
()
o

o
(@
O

| CW(y) 221(y) | SpareBit(y) 222(y) | 1Entry 223(y) |

BCM 340(2)

320(1

FIG. 10

o8]
<]
(]

13 411

N

i
410

NAND
Flash
memory
unit

US 9,348,694 B1

Sheet 11 of 12

May 24, 2016

U.S. Patent

L Old

w;m_\T\;mr N_\T;o;m w7N wimjuim Nii

i \\A\\
\ o
A, T /

Nmfmiomimm wNTNTWNimN #NT”N Nmfmiomim;w;t

1g paoe|dey T Hg peg—— \

[.omimm wNTN?N.vNTUN NmiFmiow.w;ti_‘mim_‘?;mr N_\T;o; 6 7 8 7 L 9 7 g . € Ni

U.S. Patent May 24, 2016 Sheet 12 of 12 US 9,348,694 B1

Init:
1. Per codeword:
a. count # of bad columns in codeword
b. Create list of bad columns in CW range

2. Replacement list: Initialize an empty
group
1

v

CWmin =
Find CW with minimal count of bad
columns
22

'

CWmax =
Find CW with maximal count of bad
columns
23

Counter of CWmax >
Counter of CWmin +1 ?
24

END No

Yes

v

Replace:

1. IND1 = Choose a bad-column index from CW CWmax

2. IND2 = Choose an index from CW CWmin which is not a
bad column

3. Add IND2 to CW CWmin bad column list and increase
counter

4. Remove IND1 from CW CWmax bad column list and

decrease counter
5. Add the couple IND1->IND2 to the replacement group
25

FIG. 12

US 9,348,694 B1

1
DETECTING AND MANAGING BAD
COLUMNS

CROSS REFERENCE TO RELATED
APPLICATIONS

This application relates to a concurrently filed and co-
pending U.S. patent application Ser. No. 14/050,249, entitled
“Detecting and Managing Bad Columns” by Amir Nassie,
owned by the assignee of this application and incorporated by
reference herein in its entirety.

BACKGROUND OF THE INVENTION

Nonvolatile flash memory devices store information in the
form of charge in a flash memory cell. A flash memory cell
has a CMOS transistor with an additional floating metal gate
between the substrate and the transistors gate. The charge is
stored in the floating gate and is injected to the floating gate
during an operation known as programming. The charge may
be removed during an operation known as an erase operation.

As the charge in the floating gate may vary contiguously, it
is possible to store more than just one bit per flash transistor
by using several charge levels to symbolize different
sequences of bits.

FIG. 1 demonstrates a voltage level distribution for a 3 bpc
(bits per cell) flash memory cell. The voltage level distribu-
tion includes eight lobes 101-108. Each lobe represents a
3-bit value.

The voltage level distributions of FIG. 1 illustrates non-
overlapping lobes, however this is only schematic, and in
practical cases the lobes may overlap. The reason for over-
lapping may be intentional for obtaining high programming
speed, or due to the retention effect. For floating gate devices,
an “old” page, may introduce greater overlap between lobes
than a new page, since after many program/erase (P/E) cycles
there is accumulated trap charge, which is de-trapped over
time. After a long duration, every lobe may have a larger
standard deviation (std) and may have a different mean loca-
tion. These effects are also known as retention.

The 3 bpc cell includes a most significant bit (MSB), a
central significant bit (CSB) and a least significant bit (LSB).
A physical page of flash memory module may store three
logical pages. This physical page is programmed one logical
page after the other. The programming includes various types
of programming such as MSB programming (in which some
of'the cells are programmed to a single lobe and some are left
in the erase state. Atthe end of this programming process only
two lobes exists, the erase and the MSB lobes), a CSB pro-
gramming (in which the erase lobe and the MSB lobe are each
split into two lobes by further programming pulses, depend-
ing on the original state of each cell and the corresponding
CSB bit. At the end of this step there are four lobes.) and a
LSB programming (in which each of the four lobes is further
split to create 8 lobes, overall). The logical pages are read by
applying various types of read operations such as MSB read
(in which a MSB threshold 114 is used), CSB read (in which
two CSB thresholds 112 and 116 are used) and LSB read (in
which four LSB thresholds 111, 113, 115 and 117 are used).
FIG. 2 shows similar distributions for the case of 2 bpc
devices.

ANAND Flash array (orblock) is constructed from NAND
Flash memory cells. The NAND Flash memory cells are
grouped into columns (or strings). FIG. 3 shows a typical
prior art portion 30 of a NAND flash memory array that
includes thirty two lines (wordlines 31(1)-32(32)) and mul-
tiple (Q) columns (32(1)-32(Q). Once column 32(qg) is illus-

10

15

20

25

30

35

40

45

50

55

60

65

2

trated in further details—it shows the thirty two flash memory
cells 34(g) of the column, bit line select transistor and gound
select transistor, and the voltages 33(g) supplied to the tran-
sistors and flash memory cells (Bit Line Select, Vbias, Vth).
Column 32(g) is connected to sense amplifier 35(g), that in
turn is connected to latch 36(g). A string (column) is dupli-
cated many times (for example Q=34560 times) in a block
and includes several (for example—thirty two) flash memory
cells. Each of the flash memory cells is associated with a
different wordline (or row) which connects all of the corre-
sponding cells in the other strings of the block. When a block
is chosen, each string is connected to a corresponding bitline
by turning on the Bit Line Select and the Ground Select
transistors. When a read operation is performed, a sense
amplifier is connected to the bit-line and after allowing some
time (say 25 uS) for the bit-line voltage to settle, the result is
stored by a latch.

In order to measure the charge in a certain cell within a
string, all other cells are switched on by applying a high
voltage on their gates (given by Vbias) and a comparison
voltage, Vth, is applied to the gate of the selected cell. If the
cell is charged and Vth is not high enough, the gate will not
allow current to flow and the sense-amplifier will output a
“0”. On the other hand, if the cell is not charge or Vth is high
enough, current will flow and the sense-amplifier will output
a “1”. Different schemes may exist where the cell being
samples is biased with a constant voltage (say Vcc) but in the
sense-amplifier a comparison against a reference string is
performed which reference value may be determined by some
external voltage, Vth.

The above sampling technique holds when a bit may be
obtained only through a single threshold comparison. When
more than a single threshold comparison is required, the
above procedure may be performed for each threshold and the
results may then be combined. Alternatively, several sense-
amplifiers may be used simultaneously, each one compares
against a different threshold, and the results are then com-
bined to yield the required bit value.

All cells in a wordline (physical page) are programmed
simultaneously and read simultaneously. In case of ML.C or
TLC, the programming of a wordline is divided into two or
three stages, referred to as MSB, CSB and L.SB page pro-
gramming stages.

Due to manufacturing defects, some of the columns may
not operate properly. In that case, NAND manufacturers,
allocate spare strings which are used to replace the defective
strings. The replacement is done during the manufacturing
process, where the bad columns are detected and internal
circuitry is used to remap the spare strings to replace. Typi-
cally, the replacement is not very efficient as entire bytes or
words (16 bits) are replaced even if a single column was bad.
That is, the columns are divided into chunks of 8 or 16
columns and the replacement is done on an entire chunk.

Alternatively, some manufacturers do not replace the bad
columns and leave the task to the memory controller that
controls the NAND Flash. That is, more strings are allocated
on a NAND array to allow some spare strings for replace-
ment. However, the re placements is not done at the NAND
array level but rather, bad columns are handled by the con-
troller instead.

SUMMARY

A method, a system and a non-transitory computer read-
able medium are provided for detecting and managing bad
columns of a NAND flash memory array.

US 9,348,694 B1

3

According to an embodiment of the invention a method
may be provided and may include receiving or generating bad
columns information indicative of bad columns of the NAND
flash memory array; wherein the bad columns information
has a column resolution; receiving an input data unit to be
written to the NAND flash memory array; wherein the input
data unit comprises bad column mapped data bits that are
mapped to flash memory cells that belong to bad columns of
the NAND flash memory array; sending the input data unit to
the NAND flash memory unit and instructing the NAND flash
memory unit to write the input data unit to a first portion of the
NAND flash memory array to provide a programmed data
unit; sending the bad column mapped data bits to the NAND
flash memory unit; and instructing the NAND flash memory
unit to write the bad column mapped data bits to a second
portion of the NAND flash memory array to provide pro-
grammed bad column mapped data bits.

The first and second portions of the NAND flash memory
array may belong to a same physical page of the NAND flash
memory array.

The method may include storing the bad column mapped
data bits ata bad column mapped memory unit of the memory
controller.

The method may include detecting the bad column mapped
data bits in response to a first data structure that maps flash
memory cells of bad columns to locations of bad column
mapped data bits within the input data unit.

The method may include storing at the flash memory unit a
first data structure that maps flash memory cells of bad col-
umns to locations of bad column mapped data bits and a
second data structure that maps codewords to (i) content of
the second portion of the NAND flash memory array and to
(ii) entries of the first data structure.

The method may include reading from the first portion of
the NAND flash memory unit the programmed input data unit
to provide a read data unit; applying an error correction pro-
cess on the read data unit to provide error correction results;
and determining whether to read the programmed bad column
mapped data bits in response to the error correction results.

The method may include reading the programmed bad
column mapped data bits to provide read bad column mapped
data bits; and generating an output data unit in response to the
read data unit and read bad column mapped data bits.

The generating comprises replacing bits of the read data
unit that were mapped to flash memory units of bad columns
by read bad column mapped data bits.

The method may include detecting bits of the read data unit
that were mapped to flash memory units of bad columns by
accessing a first data structure that maps flash memory cells of
bad columns to locations of bad column mapped data bits
within the input data unit.

The read data unit is associated with a certain codeword out
of multiple codewords; wherein the method comprise detect-
ing bits of the read data unit that may belong to the certain
codeword by accessing a first data structure that maps flash
memory cells of bad columns to locations of bad column
mapped data bits and by accessing a second data structure that
maps codewords to (i) content of the second portion of the
NAND flash memory array and to (ii) entries of the first data
structure.

According to an embodiment of the invention there may be
provided a non-transitory computer readable medium that
includes instructions to be executed by a computer and cause
the computer to perform stages that may include: receiving or
generating bad columns information indicative of bad col-
umns of a NAND flash memory array of a NAND flash
memory unit; wherein the bad columns information has a

10

15

20

25

30

35

40

45

50

55

60

65

4

column resolution; receiving an input data unit to be written
to the NAND flash memory array; wherein the input data unit
comprises bad column mapped data bits that are mapped to
flash memory cells that may belong to bad columns of the
NAND flash memory array; sending the input data unit to the
NAND flash memory unit and instructing the NAND flash
memory unit to write the input data unit to a first portion of the
NAND flash memory array to provide a programmed data
unit; sending the bad column mapped data bits to the NAND
flash memory unit; and instructing the NAND flash memory
unit to write the bad column mapped data bits to a second
portion of the NAND flash memory array to provide pro-
grammed bad column mapped data bits.

According to an embodiment of the invention there may be
provided a system that may include a memory controller that
may include a control circuit and an interface. The control
circuit may be arranged to receive or generate bad columns
information indicative of bad columns of the NAND flash
memory array. The bad columns information has a column
resolution. The control circuit may be arranged to receive an
input data unit to be written to the NAND flash memory array.
The input data unit includes bad column mapped data bits that
are mapped to flash memory cells that may belong to bad
columns of'the NAND flash memory array. The interface may
be arranged to: send the input data unit to the NAND flash
memory unit; instruct the NAND flash memory unit to write
the input data unit to a first portion of the NAND flash
memory array to provide a programmed data unit; send the
bad column mapped data bits to the NAND flash memory
unit; and instruct the NAND flash memory unit to write the
bad column mapped data bits to a second portion of the
NAND flash memory array to provide programmed bad col-
umn mapped data bits.

The first and second portions of the NAND flash memory
array may belong to a same physical page of the NAND flash
memory array.

The control circuit may be arranged to store the bad column
mapped data bits at a bad column mapped memory unit of the
memory controller.

The control circuit may be arranged to detect the bad col-
umn mapped data bits in response to a first data structure that
maps flash memory cells of bad columns to locations of bad
column mapped data bits within the input data unit.

The control circuit may be arranged to store at the flash
memory unit a first data structure that maps flash memory
cells of bad columns to locations of bad column mapped data
bits and a second data structure that maps codewords to (i)
content of the second portion of the NAND flash memory
array and to (ii) entries of the first data structure.

The control circuit may be arranged to read from the first
portion of the NAND flash memory unit the programmed
input data unit to provide a read data unit; apply an error
correction process on the read data unit to provide error
correction results; and determine whether to read the pro-
grammed bad column mapped data bits in response to the
error correction results.

The control circuit may be arranged to read the pro-
grammed bad column mapped data bits to provide read bad
column mapped data bits; and generate an output data unit in
response to the read data unit and read bad column mapped
data bits.

The control circuit may be arranged to the generate the
output data unit by replacing bits of the read data unit that
were mapped to flash memory units of bad columns by read
bad column mapped data bits.

The control circuit may be arranged to detect bits of the
read data unit that were mapped to flash memory units of bad

US 9,348,694 B1

5

columns by accessing a first data structure that maps flash
memory cells of bad columns to locations of bad column
mapped data bits within the input data unit.

The read data unit is associated with a certain codeword out
of multiple codewords; wherein the control circuit may be
arranged to detect bits of the read data unit that may belong to
the certain codeword by accessing a first data structure that
maps flash memory cells of bad columns to locations of bad
column mapped data bits and by accessing a second data
structure that maps codewords to (i) content of the second
portion of the NAND flash memory array and to (ii) entries of
the first data structure.

BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter regarded as the invention is particularly
pointed out and distinctly claimed in the concluding portion
of' the specification. The invention, however, both as to orga-
nization and method of operation, together with objects, fea-
tures, and advantages thereof, may best be understood by
reference to the following detailed description when read
with the accompanying drawings in which:

FIG. 1 illustrates a prior art voltage threshold distribution;

FIG. 2 illustrates a prior art voltage threshold distribution;

FIG. 3 illustrates a prior art portion of a NAND flash
memory array;

FIG. 4 illustrates a method according to an embodiment of
the invention;

FIG. 5 illustrates a system according to an embodiment of
the invention;

FIG. 6 illustrates an input data unit and an updated data unit
generated by applying a bit skipping scheme according to an
embodiment of the invention;

FIG. 7 illustrates a method according to an embodiment of
the invention;

FIG. 8 illustrates a portion of a write circuit of a memory
controller according to an embodiment of the invention;

FIG. 9 illustrates a portion of a read circuit of a memory
controller according to an embodiment of the invention;

FIG. 10 illustrates a portion of a read circuit of a memory
controller according to an embodiment of the invention;

FIG. 11 illustrates a mapping of codewords to flash
memory cells and an updated mapping of codewords to flash
memory cells according to an embodiment of the invention;
and

FIG. 12 illustrates a method according to an embodiment
of the invention.

It will be appreciated that for simplicity and clarity of
illustration, elements shown in the figures have not necessar-
ily been drawn to scale. For example, the dimensions of some
of'the elements may be exaggerated relative to other elements
for clarity. Further, where considered appropriate, reference
numerals may be repeated among the figures to indicate cor-
responding or analogous elements.

DETAILED DESCRIPTION OF THE DRAWINGS

In the following detailed description, numerous specific
details are set forth in order to provide a thorough understand-
ing of the invention. However, it will be understood by those
skilled in the art that the present invention may be practiced
without these specific details. In other instances, well-known
methods, procedures, and components have not been
described in detail so as not to obscure the present invention.

The subject matter regarded as the invention is particularly
pointed out and distinctly claimed in the concluding portion
of' the specification. The invention, however, both as to orga-

15

20

30

35

40

45

50

55

6

nization and method of operation, together with objects, fea-
tures, and advantages thereof, may best be understood by
reference to the following detailed description when read
with the accompanying drawings.

Because the illustrated embodiments of the present inven-
tion may for the most part, be implemented using electronic
components and circuits known to those skilled in the art,
details will not be explained in any greater extent than that
considered necessary as illustrated above, for the understand-
ing and appreciation of the underlying concepts of the present
invention and in order not to obfuscate or distract from the
teachings of the present invention.

Any reference in the specification to a method should be
applied mutatis mutandis to a system capable of executing the
method and should be applied mutatis mutandis to a non-
transitory computer readable medium that stores instructions
that once executed by a computer result in the execution of the
method.

Any reference in the specification to a system should be
applied mutatis mutandis to a method that may be executed by
the system and should be applied mutatis mutandis to a non-
transitory computer readable medium that stores instructions
that may be executed by the system.

Any reference in the specification to a non-transitory com-
puter readable medium should be applied mutatis mutandis to
a system capable of executing the instructions stored in the
non-transitory computer readable medium and should be
applied mutatis mutandis to method that may be executed by
a computer that reads the instructions stored in the non-
transitory computer readable medium.

There are provided systems, methods and computer read-
able media for managing bad columns at a column resolution
(on a column to column basis).

The term “controller” refers to a memory controller.

The term data unit refers to multiple data bits of any size.
The data unit can included encoded data bit, decoded data bits
or any type of data bits. A data unit can include a byte, a word,
a page and the like. In some of the examples (for example—
FIGS. 8-10) there is a reference of reading and writing words
of'a page. It is noted that this is just an example of data units.

The following description describes: (a) a scheme for
detecting bad columns and how this information may be used
during the decoding process; (b) two bad column replacement
schemes; (c) a hardware design to implement one of the bad
column replacement scheme; (d) spreading the bad columns
across several codewords to reduce a possible uneven distri-
bution of bad columns in portions of a NAND flash memory
array allocated for storing the codewords; (e) and how code
parameters may be designed modified to handle bad columns
and consider the probability of their occurrence.

Bad Columns Detection

Some NAND flash units that do not replace the bad col-
umns internally, allow the controller to read back the chunk
location (byte/word) of each bad column.

However, this has two drawbacks. First, there is no distinc-
tion between one column and another within the chunk and
thus all columns are discarded (bad or good). Secondly, there
is no distinction in the severity of how bad is the column. It
may be that some columns are declared bad but that is because
they are more prone to errors. Such columns may still be used
for carrying data but may be given lesser reliability.

Therefore, there is provided an alternative method for
detecting bad columns. An erase block is programmed with
random data and the its content is read back. The programmed
data is then compared to the data read back and a page sized
vector (i.e. number of values is equivalent to the number of

US 9,348,694 B1

7

columns in a page) is used to count the number of errors that
were detected per each column.

As an example consider a TLC device where each block
has 64 rows and 192 pages. To create this vectors we nullify
it at first and for each page being read, we compare it to the
original data and add I’s to the vector at the locations corre-
sponding to the error location.

We can then detect bad columns rather easily. We set a
threshold (e.g. 20, in the previous example) such that if the
vectors contain a value higher than that, the column is
declared bad. For TLC devices, we can also do that for each
page type separately by creating 3 such sum vectors and
repeating the procedure above per page, using a different
vector, depending on the page type.

Note that we can also obtain more refined information than
justifthe column was bad or not. The value of the vector may
be used as a reliability indicator for a decoder. For example,
returning to the example above: a block with 192 pages. The
reliability indicator may be defined as the ratio LLR=Log
(value/(192-value)). This can then be used in conjunction
with an LDPC code or any other coding scheme which
decoder can make use of such log likelihood ratios.

Such information can also be used in conjunction with
coding schemes which decoder allows decoding inputs with
erasures. That is a decoding scheme which obtains per each
bit 3 values: 0, 1 and Erasure. All columns which LLR above
was between two given values can be assigned the Erasure
value and the others O or 1, depending on the read value. BCH
codes can also be decoded using erasure information. Other
codes are LDPC, turbo-codes and more.

FIG. 4 illustrates method 400 according to an embodiment
of the invention.

The method is for detecting bad columns of a NAND flash
memory array.

Method 400 may start by stage 410 of sending input data to
a NAND flash memory unit that may include the NAND flash
memory array and instructing the NAND flash memory unit
to write input data to the NAND flash memory array to pro-
vide programmed data.

Stage 410 may be followed by stage 420 of reading from
the NAND flash memory array the programmed data to pro-
vide read data.

Stage 420 may be followed by stage 430 of comparing the
input data and the read data to provide column errors statistics
at a column resolution. The column error statistics provide
information on the number of errors per column. An error is
detected as a mismatch between a value of an input data bit
and a corresponding read data bit. The mismatch is associated
with a column that includes the flash memory cell that stored
the programmed data bit that corresponds to the rad data bit
and the input data bit.

Stage 430 may be followed by stage 440 of defining, by a
memory controller, bad columns of the NAND flash memory
array in response to the column error statistics.

The column errors statistics may be indicative of a number
of errors per column. Stage 440 may include defining a col-
umn of the NAND flash memory array as a bad column if a
number of errors associated with the column exceed an error
threshold.

The column errors statistics is indicative of a number of
errors per column and stage 440 may include assigning a
reliability score per each column in response to a number of
errors associated with the column. This reliability score can
be used when determine what to program to flash memory
cells of a bad column, when determining data reconstruction
schemes and the like.

15

20

30

35

40

45

55

60

8

Stage 440 may be followed by stage 450 of responding to
the definition of bad columns.

The responding may include applying any of the schemes
disclosed in this application including, for example, deter-
mining encoding parameters, bit skipping, bit replacement,
bad column spreading schemes or any bad column replace-
ment schemes.

Stage 450 may include at least one out of stages 452, 454,
456 and 458.

Stage 452 may include defining an encoding scheme for
data units to be written to the NAND flash memory array
while constraining a value of bits to be written to the bad
columns to be of an erase value.

Stage 454 may include bit skipping—receiving, by the
memory controller, an input data unit to be written to the
NAND flash memory array; generating, by the memory con-
troller, an updated data unit by adding dummy bits to the input
data unit at locations that are expected to be written to bad
columns of the NAND flash memory array; and sending the
updated data unit to the NAND flash memory unit and
instructing the NAND flash memory unit to write the updated
data unit to the NAND flash memory array. The value of a
dummy bit to be written, instead a data bit, to a flash memory
cell of a bad column equals a value of the data bit.

Stage 456 may include a bad column spreading scheme—
defining a mapping ot bits of codewords to flash memory cells
of the NAND flash memory unit in response to locations of
the bad columns.

The defining of the mapping reduces an effect of an uneven
distribution of bad columns within NAND flash memory unit
portions allocated for storing the codewords.

The mapping of bits of a codeword, is further responsive to
a relationship between (a) a size (S1) of a NAND flash
memory unit portion allocated for storing the codeword, and
(b) a sum of (i) a size (S2) of the codeword and (ii) a number
(N1) of flash memory cells that belong to a bad column within
the NAND flash memory unit portion allocated for storing the
codeword.

I S1>S2+N1 there may not be a need to perform spreading
and the entire codeword can be written only to flash memory
cells of good columns. Nevertheless—S1-(S2+N1) flash
memory cells may be programmed with stuffing bits.

If S1>S2+4N1 then some bits may be lost.

Stage 456 may include swapping bits that belong to difter-
ent codewords in response to an amount of bad columns and
to a location of bad columns in NAND flash memory units
portions initially allocated for storing the different code-
words.

Stage 458 may include determining an encoding parameter
in response to the column error statistics.

The encoding parameter may be a bit error rate of a code to
be used for providing codewords. These codewords may be
represented by one or more input data units.

The encoding parameter may be a number of redundancy
bits to be allocated per codeword.

The number of redundancy bits may be determined to
optimize a value of a function of (a) bad column distribution
between different dies of the NAND flash memory unit and
(b) a bit error rate function.

The determining may be responsive to column error statis-
tics of different dies of NAND flash memory unit that are
activated at a certain point in time.

Bad Columns Replacement Schemes

Another method of handling bad columns is not using
them. This is generally supported by column replacement
operation within the NAND Flash devices. However, as men-

US 9,348,694 B1

9

tioned this replacement operation is rather coarse and works
on entire chunks instead of a single string.

According to an embodiment of the invention it may be
desirable to perform the replacement in a controller at the bit
level. In general, before programming data into the NAND,
codewords may be aggregated inside the NAND Flash con-
troller until sufficient data is available to program a full
NAND page. The NAND page data is the transferred to the
NAND device through a NAND interface (NI) in the control-
ler (see FIG. 5). According to an embodiment of the invention
it may be desirable to modify the NAND interface unit in the
NAND controller such that the NI unit (NI) performs the
required bitwise replacement operation.

Note that the NI works by transferring the data byte by byte
or word by word. The NAND device is unaware of the fact
that there are bad columns or of the content of the data. Any
of the replacement operations are performed by the NI with-
out modifying the standard operation of the NAND device.

Bit Skipping

While sending the aggregated codewords to the NAND
Flash, the NI unit is loaded with the list of all bad columns in
the NAND Flash die. Each time a bit is going to be written to
abad column, a dummy bit is inserted in place of the original
data and the original bit stream from that point on is shifted by
one bit. Thus, the original data is not written to bad columns.
Similarly, when reading data from the NAND, each time abad
column is encountered, the corresponding bit is overrun with
the next bit being read. All the following bits are shifted to
replace the columns being overrun. FIG. 6 shows an example
of' a mapping between a concatenated codeword 60 and the
physical page 61.

Note that throughout we assume that the amount of data in
the concatenated codewords is less than in the physical page,
to make room for bad columns. However, there may be two
cases that need to be taken into account:

Case one—the amount of bits in the concatenated code-
words+the number of bad columns is still smaller than the
physical page size. In that case, during the programming
operation, additional dummy bits are inserted (e.g. zeros) at
the end of the stream to complete it to a physical page size.

Case two—the amount of bits in the concatenated code-
words+the number of bad columns is still greater than the
physical page size. In that case, during programming the data
bits which over-run the page are truncated. During the read
operation missing data, bits are padded with zeros, causing
some errors in those bits.

Whether case one or case two are relevant depend on the
size of the codeword redundancy and the number of bad
columns. The codeword redundancy can be chosen by the
designer of the NAND Flash controller. However, the number
of bad columns in a NAND device is random and changes
between one device and another. The manufacturer guaran-
ties that the maximum number of bad columns will not exceed
a certain maximum but this is typically much larger than the
actual number of bad columns. Therefore, the size of the
redundancy may be chosen as a function of the distribution of
bad columns.

Another note on the choice of the dummy bits: the dummy
bit may be chosen to have the value of the original bit intended
to be written to the bad column. If a bad column is not
completely bad, the read information from that bit can be used
to obtain additional information and increase reliability.

Bit Replacement

Bit skipping may be difficult to implement in hardware as
the streaming data becomes unaligned with the standard units

10

15

20

25

30

35

40

45

50

55

60

65

10

of' bytes/words/double words. This alignment is important as
it eases the job of parallelizing in streamlining the operation
of the unit.

Therefore, in the following we present a hardware imple-
mentation of a unit that does not perform bit skipping but
rather bit replacement. In this scheme, data bits that fall on
bad columns are copied into a spare register, which then
appended to the data stream and programmed last to the
NAND page. During read, the last bytes, which contain the
spare register, are read first.

Under some cases, the read operation may first be
attempted without reading the spare register. In that case, the
information that was read from the bad columns can be used.
Only upon decoding failure we may choose to read the spare
register bits. The cases that may be of interest are those where
data is being read from random location which will cause the
NI unit to take longer time to read, if it needs to perform
replacement.

Hardware Implementation

FIG. 5 illustrates system 300 according to an embodiment
of the invention. It may include memory controller 333 and
NAND flash memory unit 390. The memory controller 333
may include a control circuit 310 and a NAND interface unit
(NI) 350. The control circuit 310 may include encoder/de-
coder 312, a read circuit 320, write circuit 330, a determina-
tion circuit 360, and a memory unit 340.

The NAND flash memory unit 390 includes an internal
controller 380 and NAND flash memory array 370. It may
include multiple arrays, one or more flash memory dies, one
or more planes, and the like. The internal controller 380 may
program data to the NAND flash memory array 370, may read
data from the NAND flash memory array 370 and may erase
the NAND flash memory array 370—under the control of
instructions sent from the memory controller 333 (via NU
350).

The determination circuit 360 may receive or generate
column error statistics may determine how to respond to
column error statistics, may determine an encoding scheme
and the like. Encoder/decoder 312 may encode and/or decode
data, append redundancy bits and the like.

FIGS. 8-10 illustrate portions of the memory controller 333
according to various embodiments of the invention.

Bad columns detection information is gathered and saved
in BCM—Bad Column Memory (say implemented in Ran-
dom Access Memory) 340(2) that is accessible by the NI unit
and holds the data required for bits replacement. Each line of
this memory holds:

a. Pointer to a Word (say 16 bits) in a page that holds at least

1 bad column.

b. Bit mask (16 bits for example) that specifies the bad bit
within this Word.

The number of BCM lines should equal to the maximal
number of bad columns that is guaranteed by the manufac-
turer.

As bad column is a bit line defect, same bits should be
replaced in all pages that use the same sense amplifier (typi-
cally a Flash Plane). Hence, a single BCM database may be
sufficient to replace all bad columns in this Flash Plane. Ifthe
Flash device consists of multiple planes, multiple BCMs are
required.

FIG. 8 describes the implementation of Flash page pro-
gram circuit with bad bits replacement. Normally, data (ag-
gregated codewords) streams in from a page buffer 340(1)
within a memory unit 340 of a control circuit 310 of memory
controller 333, into NI unit port 101 and address counter 102
counts each Word that is sent to the NAND flash memory unit
390. The invention suggests another BCM address counter

US 9,348,694 B1

11

103 to point the BCM relevant line, this counter is initiated to
the value “0” before each program operation begins. Data
begins to flow from data in port 101 to the flash device while
page address counter 102 counts the outgoing Words. Once
the page address counter 102 reaches the first Word that
consists a bad column (equals first word pointer 211(0)), “bad
column accessed logic” output wire 104 is asserted driving
the input of the AND gate 105 high. The first bit mask 212(0)
is present on the other input of AND gate 105. AND gate 105
is duplicated for each bit in the Word (say 16 bits—i.e. gates
105.0-105.15). The outputs of AND gates 105 cause relevant
bits of data in bus 101 to be shifted into the spare register 106.
The bit size of the spare register should equal the maximal
number of bad columns that manufacturer guaranties. Single
or multiple bits may be asserted on the bit mask bus, and so
single or multiple bits may be shifted into the spare register
each clock cycle in a LSB—=MSB order. Since wire 104 is
asserted, the BCM address counter 103 (line pointer) is incre-
mented. The data continues flowing through the NI unit, page
address counter 102 continues running, and when it equals the
next Word pointer 211(1), data in bus bits are replaced accord-
ing to bit mask 212(1) and BCM address 103 is incremented
again.

This flow continues until all aggregated codewords were
driven in from the page buffer 340(1). At this time page
address comparator 107 output pin is asserted causing spare
register 106 to shift out a Word each clock cycle. Meanwhile,
the select to data MUX 108 select signal is also set causing
data from spare register 106 to flow in the NAND Flash
memory unit 390 direction on the data bus. During shift data
out of spare register 106, zeros may be shifted in (for end
zeros padding). The flow ends when the number of Words sent
to the Flash device equals the page size.

Note that bad columns may be present in the spare area
(end of the Flash page). As this area is relatively small com-
pared to the page size, not replacing those bits will probably
not add many error to the programmed page, and when read-
ing, those errors can be fixed by error correction circuitry.
However, those bits can be replaced during program opera-
tion as long as the Flash page size is no smaller than the sum
of aggregated codewords and the maximum bad columns.

FIG. 9 describes the implementation of Flash page read
circuit with bad bits replacement. Normally, Flash page data
comes in from NAND flash memory unit 390 on data bus 401
single Word (say 16 bits) at a clock cycle and driven to page
buffer 340(1) on data bus 111. The transaction ends when
page size Words were read. The invention suggests replace-
ment of the bad column bits by the NI unit 350, meaning that
aggregated codewords+spare bits stream in from the NAND
Flash memory unit 390 and only aggregated codewords
stream out to page buffer 340(1).

NAND Flash interface protocol allows reading from any
desired Word offset of the page register 410 in the NAND
Flash memory unit 390 that holds the latched array data.

When the controller signals to start reading, a finite state
machine (FSM 120) is responsible to first read the spare area
of the page register and later the aggregated codewords.

Spare area read FSM 120 controls the Flash page offset
setting by using address setting circuitry 130. At first FSM
120 sets the page register 410 read pointer to offset 411. FSM
120 also activates page address counter 102 (via interface
121) to count Words starting at the spare page area, thus page
address comparator 107 result is asserted (counter greater
than aggregated codewords). Assertion of this signal causes
on one hand incoming data Words on data bus 401 to be
shifted into spare register 106, and on the other hand enable
circuitry 110 to block data from being driven to page buffer

10

15

20

25

30

35

40

45

50

55

[
<

65

12

340(1). When page address counter 102 reaches page end it
signals FSM 120 “spare read done” via interface 122.

Aggregated codewords read FSM 120 than sets Flash
device page register offset to 411 (typically 0) and activates
page address counter 102 again (via interface 123) to start
counting from the value set in page register 410 to offset 412.
At this stage BCM address counter 103 is set to O, thus
pointing the first BCM line. Page data starts streaming in and
page address counter 102 counts each incoming Word. Once
page counter 102 reaches the BCM output 211(0) (selected
word_ptr), “bad column accessed logic” output wire 104 is
asserted.

Then:

c. AND gates 105 drive logical “1” for any bit set on the
current bit mask 212(0).

d. The amount of “to be replaced bits™ are shifted out of spare
register 106.

e. Bit mask 212(0) specified bits are replaced by MUX 109.

f. BCM address (line pointer) counter 103 is incremented to
point the next line.

Since page address counter was activated to count from
page start, the data out circuitry 110 does not block the data
out bus 111 that drives Word by Word to the page buffer
340(1).

In the next clock cycle the incoming the page address
counter output 102 is again compared vs. the next BCM line
Word pointer that is now present on the BCM output 211(0).
Total amount of aggregated codewords is read from Flash
memory unit 390 and by searching the BCM entries all bad
columns are replaced.

Bad column located in the spare area can be replaced, more
on that is described later.

FIG. 10 illustrates a portion 320(1) of a read circuit 320
capable of random access reading of codewords according to
an embodiment of the invention.

Sometimes the system needs to read only a portion of a
Flash page. As the Flash page holds ECC codewords this
random read is aligned to a codeword start (say second code-
word out of four codewords in a page). In such a case, the
relevant BCM pointers may start from another BCM line than
line O (as some lines may hold pointers to bad columns in the
first codeword).

Two methods are suggested to handle such cases:

g. First method: the read flow in this case begins with regular
spare area read, FSM 120 sets spare area page offset 411,
and uses interfaces 121 and 122 to shift out the spare area
bits. Than FSM 120 signals the BCM address counter 103
via interface 124 to scan the BCM until a Word pointer is
within the relevant (in our example second) codeword
boundaries. Each clock cycle the BCM line pointer is
incremented by 1. During scanning phase irrelevant
replacement bits (of first codeword in this example) may
shift out of spare register 106 each cycle. Scanning phase is
done when a BCM line with a Word pointer within the
relevant codeword (or higher one) is reached. As a result
“scan done” is signaled over interface 124 to FSM 120.
From this point on, FSM 120 uses interface 123 to set Flash
page offset to the desired codeword start 413, and reading
is done with the desired length (single codeword or longer).

Using this way the scanning stage is time consuming and may
affect the system performance.

h. Second method: We assume that random reads start from
few constant offsets in a page (codewords starts) and that
this start is aligned to Word resolution. In order to save
previous method scanning time, it is suggested that another
database is saved in the controller. This database “Code-
word First Bad Bits Pointers™ holds, per codeword

US 9,348,694 B1

13

The bit location of first replacing bit of the codeword in the
spare area (1) First relevant BCM line for the read codeword
ID.

Read flow is as follows.

FSM 120 sets the page Word offset 411, using page address
setting circuitry 130, to the Word that holds the first replacing
bit (I). FSM 120 than reads the spare area from this offset to
the end of the page (or until all replacing bits for the relevant
codewords are read). Note that it may be required to shift out
some bits from spare register 106 since the first read Word
from spare area may hold some bits of a codeword that is not
being read.

Now FSM 120 loads BCM address counter 103 with the
first relevant BCM line (II) via interface 124. FSM 120 also
sets the page offset in the Flash to Word 413 address setting
circuitry via control bus 402. From this point on, reading is
done as in the data read phase of a whole page.

FIG. 7 is a flow chart of a method 500 according to an
embodiment of the invention.

Method 500 may start by stage 510 of receiving or gener-
ating bad columns information indicative of bad columns of a
NAND flash memory array of a NAND flash memory array.

The bad columns information has a column resolution—
each column of the NAND flash memory array can be tagged
as good or bad (or associated a reliability level that hay have
more than two possible values) based upon errors detected in
flash memory cells that belong to these columns. This is a
finer resolution than chuck based (multiple column) resolu-
tion.

The bad column information can be generated, for
example, by method 400.

Stage 510 may be followed by stage 520 of receiving an
input data unit to be written to the NAND flash memory array.

The input data unit may include bad column mapped data
bits that are mapped to flash memory cells that belong to bad
columns of the NAND flash memory array. The input data
unit may be, for example, a word of a page and the method
may be repeated for each word of that page. The bad column
mapped data bits may be referred in the following text (for
example in relation to FIG. 8-10) as “spare bits.”

Stage 520 may be followed by stage 530 of detecting the
bad column mapped data bits. Stage 530 may include storing
the bad column mapped data bits in bad column mapped
memory unit of the memory controller. This bad column
mapped memory unit can be a shift register, can be volatile or
non-volatile. It may be referred to (for example—in pages
8-10) as a “spare bits register”.

Stage 530 may include detecting the bad column mapped
data bits in response to a first data structure that maps flash
memory cells of bad columns to locations of bad column
mapped data bits within the input data unit. FIGS. 8 and 9
illustrate an example of a first data structure that is stored in a
bad column memory (BCM). It includes a bit map (that tags
bad and good flash memory cells) for each word of a page.

FIG. 10 illustrates an example of a first data structure 210
and of a second data structure 220 that are stored in a bad
column memory (BCM) 200. The first data structure 210
includes a bit map (that tags bad and good flash memory cells)
for each word of a page—bit maps 212(0)-212(x) for x words
211(0)-211(x) of a page. The second data structure 220 maps
codewords (221(0)-221(»)) to (i) content of the second por-
tion of the NAND flash memory array (223(0)-223(y)) and to
(ii) entries of the first data structure (222(0)-222(y)).

Stage 530 may be followed by stage 540 of sending the
input data unit to the NAND flash memory unit and instruct-

10

15

20

25

30

35

40

45

55

60

65

14

ing the NAND flash memory unit to write the input data unit
to a first portion of the NAND flash memory array to provide
a programmed data unit.

Stage 540 may be followed by stage 550 of sending the bad
column mapped data bits to the NAND flash memory unit. It
is noted that the bad column mapped data can be stored on the
NAND flash memory unit or in any other memory unit of any
type. Furthermore, it may be stored once in the NAND flash
memory Unit in a particular location and not every time new
data is written. It is then read only once, when the system
starts up and a memory controller reads the bad column
mapped data from the NAND flash memory unit.

Stage 550 may be followed by stage 560 of instructing the
NAND flash memory unit to write the bad column mapped
databits to a second portion of the NAND flash memory array
to provide programmed bad column mapped data bits. It is
noted that the first and second portions can be programmed
concurrently and can belong to a same page.

This second portion can be referred to as a spare area. The
second portion can include bad columns or may be free of bad
columns. If it includes bad columns than any of the schemes
illustrated in this application (such as bit skipping) can be
applied.

The first and second portions of the NAND flash memory
array belong to a same physical page of the NAND flash
memory array.

Stage 560 may be followed by either one of stages 570 and
572.

Stage 570 includes reading the programmed bad column
mapped data bits to provide read bad column mapped data
bits.

Stage 572 may include reading from the first portion of the
NAND flash memory unit the programmed input data unit to
provide a read data unit.

Stage 572 may be followed by stage 574 of applying an
error correction process on the read data unit to provide error
correction results and determining whether to read the pro-
grammed bad column mapped data bits in response to the
error correction results. If, for example, the error correction
process corrected all the errors then there is no need in reading
the programmed bad column mapped data bits.

If it is determined to read the programmed input data unit
then stage 574 is followed by stage 570——<lse it is followed by
stage 580 of generating an output data unit in response to the
read data unit and read bad column mapped data bits.

Stage 580 may include replacing bits of the read data unit
that were mapped to flash memory units of bad columns by
read bad column mapped data bits.

Stage 580 may include error correcting the read data unit
using information obtained from the read bad column
mapped data bits.

Bad Columns Spreading Schemes

Next we consider a different type of handling of bad col-
umns. Bad-columns may be arbitrarily distributed in a device.
Therefore, the bad columns may be unevenly distributed
between the codewords. FIG. 11 shows an example of an
imaginary page 80 with 32 bits with 4 bad columns—repre-
sented by black boxes in bits 4, 19, 25 and 31. There are also
4 codewords (CWs) 71-74 in this example with CW 1 sufter-
ing from 1 bad column, CW2 having no bad columns, CW3
having 1 bad column and CW 4 having 2 bad columns. This
means that CW4 has a higher probability of decoding failure
than the rest of the CWs. Furthermore, CW2 has higher prob-
ability of decoding success than the others.

To even out the probability of decoding success, According
to an embodiment of the invention it may be desirable to
spreading the effect of the bad columns across the CWs. In

US 9,348,694 B1

15

FIG. 11 this is done by using one ofthe bits of CW2 to replace

a bad column of CW4 and writing content of CW2 to the bad

bit. Thus, before programming, bit 31 (in CW4) is copied to

position 16 (in CW2) and the programming is performed.

After reading the page, bit 16 is placed in the position of bit 31

and decoding is done for all 4 codewords. Effectively, each

codeword has 1 “bad” bit, whether because of a real or virtual
bad-column.

In general, to even out bad columns across codewords the
scheme of FIG. 12 may be used. According to the method 20
of FIG. 12, good columns belonging to certain codewords are
arbitrarily chosen to replace bad columns. However, we may
choose these good columns such that if they were flipped to be
bad columns their effect on decoding may be the least. The
choice of such columns of course depends on the choice of the
coding technique. Method 20 includes stages 21, 22, 23 and
24 and tries to spread bad flash memory cells between code-
words—starting from replacing bits from a codeword that is
mapped to a lowest number of bad bits with the bits from
another codeword that is mapped to a highest number of bad
bits.

Finally, the spreading scheme above does not include col-
umn replacement in the case where the total data in the code-
words is smaller than the data in the page. The two schemes
may be combined to create a joint replacement spreading
scheme such that if the number of columns+the total number
of'bits in the concatenated codewords is larger than a page, the
bad columns are evenly spread across the codewords.

Code Definition to Account for Bad Columns

In general, the number of bad columns in a NAND device
is random and changes between one device and another. The
manufacturer guaranties that the maximum number of bad
columns will not exceed a certain maximum but this is typi-
cally much larger than the actual number of bad columns.
Therefore, the size of the redundancy may be chosen as a
function of the distribution of bad columns.

We can define a BER function of the code which is a
function that defines the BER the code can handle given a
certain amount of bad columns that were not replaced and
given the available redundancy.

Example: Fber(Nred,Nbad_coulmns)=A*Nred-
B*Nbad_coulmns.

a. Nred=number of redundancy bits

b. Nbad columns=number of bad columns that were not
replaced

A and B are parameters that approximate the capabilityof the
code. The code may be BCH, BCH with erasure and the
like, LDPC with hard or soft or erasure decoding,

Other examples of BER functions are also possible.

In addition, we also define a function that relates between
the distribution of bad columns and the redundancy of a code
word.

Example:

a. Preduced-bad-columns(k,Nred)=Pbad_columns(k').

b. k'=k+Nred-C.

c. Pbad_columns(k') is the distribution of the number of bad
columns across dies of the flash memory unitand C is some
constant.

Other examples of distributions are also possible.

Therefore, given the above distribution and BER functions
we can optimize the choice of redundancy to maximize a
score function. Examples:

a. Maximize average handled BER, wherein the avarage
handled BER equals a sum (over k values ranging from
zero to a maximal number of errors) of Preduced_bad_col-
umns(k,Nred) multiplied by Fber(Nred,k).

10

15

20

25

30

35

40

45

50

55

60

65

16

b. Maximize BER under an outage probability limitation so
that the chosen redundancy is maximized such that the sum
of Preduced-bad-columns(k,Nred) over k greater than 0 is
still smaller than some limit (Outage limit).

maximize Rred

s.t. Preduced bad colunns (k > 0, Pyeq) < Outage limit

Adaptive Code Definition Upon Device Initialization

Another alternative is to define the code redundancy upon
controller initialization. A controller is always coupled with a
set of devices. Once the devices are chosen, the bad columns
are fixed. Therefore, the redundancy may be adapted to that
bad columns configuration such as to replace all bad columns
and thus maximize the handled BER for that die configura-
tion.

Note that the redundancy may be configured only to a
predefined set of values. In that case the redundancy is chosen
for a given die configuration to maximize Fber(Nred,Nbad-
_coulmns+Nred-C).

Concatenated Dies

In some systems data is written on several NAND flash dies
and codewords may be programmed across two dies (first part
of'a codeword on one die and the last part of the codeword on
another die) or even more than two dies. In this case, we can
think of several dies as one supper die and add up all the bad
columns together and apply all the algorithms above (bit
skipping, replacement, etc.) to the supper die instead of a
single die. Furthermore, we can apply the redundancy selec-
tion methods above to the supper die rather than a single die.
This allows improving some of the results since now the
number of bad columns is effectively averaged over several
dies.

The invention may also be implemented in a computer
program for running on a computer system, at least including
code portions for performing steps of a method according to
the invention when run on a programmable apparatus, such as
a computer system or enabling a programmable apparatus to
perform functions of a device or system according to the
invention. The computer program may cause the storage sys-
tem to allocate disk drives to disk drive groups.

A computer program is a list of instructions such as a
particular application program and/or an operating system.
The computer program may for instance include one or more
of: a subroutine, a function, a procedure, an object method, an
objectimplementation, an executable application, an applet, a
servlet, a source code, an object code, a shared library/dy-
namic load library and/or other sequence of instructions
designed for execution on a computer system.

The computer program may be stored internally on a non-
transitory computer readable medium. All or some of the
computer program may be provided on computer readable
media permanently, removably or remotely coupled to an
information processing system. The computer readable
media may include, for example and without limitation, any
number of the following: magnetic storage media including
disk and tape storage media; optical storage media such as
compact disk media (e.g., CD-ROM, CD-R, etc.) and digital
video disk storage media; nonvolatile memory storage media
including semiconductor-based memory units such as
FLASH memory, EEPROM, EPROM, ROM; ferromagnetic
digital memories; MRAM; volatile storage media including
registers, buffers or caches, main memory, RAM, etc.

US 9,348,694 B1

17

A computer process typically includes an executing (run-
ning) program or portion of a program, current program val-
ues and state information, and the resources used by the
operating system to manage the execution of the process. An
operating system (OS) is the software that manages the shar-
ing of the resources of a computer and provides programmers
with an interface used to access those resources. An operating
system processes system data and user input, and responds by
allocating and managing tasks and internal system resources
as a service to users and programs of the system.

The computer system may for instance include at least one
processing unit, associated memory and a number of input/
output (I/O) devices. When executing the computer program,
the computer system processes information according to the
computer program and produces resultant output information
via I/O devices.

In the foregoing specification, the invention has been
described with reference to specific examples of embodi-
ments of the invention. It will, however, be evident that vari-
ous modifications and changes may be made therein without
departing from the broader spirit and scope of the invention as
set forth in the appended claims.

Moreover, the terms “front,” “back,” “top,” “bottom,”
“over,” “under” and the like in the description and in the
claims, if any, are used for descriptive purposes and not nec-
essarily for describing permanent relative positions. It is
understood that the terms so used are interchangeable under
appropriate circumstances such that the embodiments of the
invention described herein are, for example, capable of opera-
tion in other orientations than those illustrated or otherwise
described herein.

The connections as discussed herein may be any type of
connection suitable to transfer signals from or to the respec-
tive nodes, units or devices, for example via intermediate
devices. Accordingly, unless implied or stated otherwise, the
connections may for example be direct connections or indi-
rect connections. The connections may be illustrated or
described inreference to being a single connection, a plurality
of connections, unidirectional connections, or bidirectional
connections. However, different embodiments may vary the
implementation of the connections. For example, separate
unidirectional connections may be used rather than bidirec-
tional connections and vice versa. Also, plurality of connec-
tions may be replaced with a single connection that transfers
multiple signals serially or in a time multiplexed manner.
Likewise, single connections carrying multiple signals may
be separated out into various different connections carrying
subsets of these signals. Therefore, many options exist for
transferring signals.

Although specific conductivity types or polarity of poten-
tials have been described in the examples, it will be appreci-
ated that conductivity types and polarities of potentials may
be reversed.

Each signal described herein may be designed as positive
or negative logic. In the case of a negative logic signal, the
signal is active low where the logically true state corresponds
to a logic level zero. In the case of a positive logic signal, the
signal is active high where the logically true state corresponds
to a logic level one. Note that any of the signals described
herein may be designed as either negative or positive logic
signals. Therefore, in alternate embodiments, those signals
described as positive logic signals may be implemented as
negative logic signals, and those signals described as negative
logic signals may be implemented as positive logic signals.

Furthermore, the terms “assert” or “set” and “negate” (or
“deassert” or “clear”) are used herein when referring to the
rendering of a signal, status bit, or similar apparatus into its

10

20

30

40

45

55

18

logically true or logically false state, respectively. If the logi-
cally true state is a logic level one, the logically false state is
alogic level zero. And if the logically true state is a logic level
zero, the logically false state is a logic level one.

Those skilled in the art will recognize that the boundaries
between logic blocks are merely illustrative and that alterna-
tive embodiments may merge logic blocks or circuit elements
or impose an alternate decomposition of functionality upon
various logic blocks or circuit elements. Thus, it is to be
understood that the architectures depicted herein are merely
exemplary, and that in fact many other architectures may be
implemented which achieve the same functionality.

Any arrangement of components to achieve the same func-
tionality is effectively “associated” such that the desired func-
tionality is achieved. Hence, any two components herein
combined to achieve a particular functionality may be seen as
“associated with” each other such that the desired function-
ality is achieved, irrespective of architectures or intermedial
components. Likewise, any two components so associated
can also be viewed as being “operably connected,” or “oper-
ably coupled,” to each other to achieve the desired function-
ality.

Furthermore, those skilled in the art will recognize that
boundaries between the above described operations merely
illustrative. The multiple operations may be combined into a
single operation, a single operation may be distributed in
additional operations and operations may be executed at least
partially overlapping in time. Moreover, alternative embodi-
ments may include multiple instances of a particular opera-
tion, and the order of operations may be altered in various
other embodiments.

Also for example, in one embodiment, the illustrated
examples may be implemented as circuitry located ona single
integrated circuit or within a same device. Alternatively, the
examples may be implemented as any number of separate
integrated circuits or separate devices interconnected with
each other in a suitable manner.

Also for example, the examples, or portions thereof, may
implemented as soft or code representations of physical cir-
cuitry or of logical representations convertible into physical
circuitry, such as in a hardware description language of any
appropriate type.

Also, the invention is not limited to physical devices or
units implemented in non-programmable hardware but can
also be applied in programmable devices or units able to
perform the desired device functions by operating in accor-
dance with suitable program code, such as mainframes, mini-
computers, servers, workstations, personal computers, note-
pads, personal digital assistants, electronic games,
automotive and other embedded systems, cell phones and
various other wireless devices, commonly denoted in this
application as ‘computer systems’.

However, other modifications, variations and alternatives
are also possible. The specifications and drawings are,
accordingly, to be regarded in an illustrative rather than in a
restrictive sense.

In the claims, any reference signs placed between paren-
theses shall not be construed as limiting the claim. The word
‘comprising’ does not exclude the presence of other elements
or steps then those listed in a claim. Furthermore, the terms
“a” or “an,” as used herein, are defined as one or more than
one. Also, the use of introductory phrases such as “at least
one” and “one or more” in the claims should not be construed
to imply that the introduction of another claim element by the
indefinite articles “a” or “an” limits any particular claim
containing such introduced claim element to inventions con-
taining only one such element, even when the same claim

US 9,348,694 B1

19

includes the introductory phrases “one or more™ or “at least
one” and indefinite articles such as “a” or “an.” The same
holds true for the use of definite articles. Unless stated other-
wise, terms such as “first” and “second” are used to arbitrarily
distinguish between the elements such terms describe. Thus,
these terms are not necessarily intended to indicate temporal
or other prioritization of such elements. The mere fact that
certain measures are recited in mutually different claims does
not indicate that a combination of these measures cannot be
used to advantage.

While certain features of the invention have been illus-
trated and described herein, many modifications, substitu-
tions, changes, and equivalents will now occur to those of
ordinary skill in the art. It is, therefore, to be understood that
the appended claims are intended to cover all such modifica-
tions and changes as fall within the true spirit of the invention.

I claim:

1. A method for managing bad columns of a NAND flash
memory array of a NAND flash memory unit, the method
comprises:

receiving or generating bad columns information indica-

tive of the bad columns of the NAND flash memory
array on a column to column basis;
receiving an input data unit to be written to the NAND flash
memory array; wherein the input data unit comprises
bad column mapped data bits that are mapped to flash
memory cells that belong to the bad columns of the
NAND flash memory array;

sending the input data unit to the NAND flash memory unit
and instructing the NAND flash memory unit to write the
input data unit to a first portion of the NAND flash
memory array to provide a programmed data unit;

sending the bad column mapped data bits to the NAND
flash memory unit; and

instructing the NAND flash memory unit to write the bad

column mapped data bits to a second portion of the
NAND flash memory array to provide programmed bad
column mapped data bits; and

wherein the first and second portions of the NAND flash

memory array belong to a same physical page of the
NAND flash memory array.

2. The method according to claim 1 comprising storing the
bad column mapped data bits at a bad column mapped
memory unit of a memory controller.

3. The method according to claim 1 comprising detecting
the bad column mapped data bits in response to a first data
structure that maps the flash memory cells of bad columns to
locations of the bad column mapped data bits within the input
data unit.

4. The method according to claim 1 comprising storing at
the NAND flash memory unit a first data structure that maps
the flash memory cells of the bad columns to locations of the
bad column mapped data bits and a second data structure that
maps codewords to (i) content of the second portion of the
NAND flash memory array and to (ii) entries of the first data
structure.

5. The method according to claim 1 comprising reading
from the first portion of the NAND flash memory unit the
programmed input data unit to provide a read data unit; apply-
ing an error correction process on the read data unit to provide
error correction results; and determining whether to read the
programmed bad column mapped data bits in response to the
error correction results.

6. The method according to claim 5 comprising reading the
programmed bad column mapped data bits to provide read

10

30

35

40

45

55

65

20

bad column mapped data bits; and generating an output data
unit in response to the read data unit and the read bad column
mapped data bits.
7. The method according to claim 6 wherein the generating
comprises replacing bits of the read data unit that were
mapped to flash memory units of bad columns by the read bad
column mapped data bits.
8. The method according to claim 6, comprising detecting
bits of the read data unit that were mapped to flash memory
units of bad columns by accessing a first data structure that
maps flash memory cells of bad columns to locations of bad
column mapped data bits within the input data unit.
9. The method according to claim 6, wherein the read data
unit is associated with a certain codeword out of multiple
codewords; wherein the method comprising detecting bits of
the read data unit that belong to the certain codeword by
accessing a first data structure that maps flash memory cells of
bad columns to locations of bad column mapped data bits and
by accessing a second data structure that maps codewords to
(1) content of the second portion of the NAND flash memory
array and to (ii) entries of the first data structure.
10. A non-transitory computer readable medium that stores
instructions to be executed by a computer and cause the
computer to perform stages comprising:
receiving or generating bad columns information indica-
tive of bad columns of a NAND flash memory array ofa
NAND flash memory unit on a column to column basis;

receiving an input data unit to be written to the NAND flash
memory array; wherein the input data unit comprises
bad column mapped data bits that are mapped to flash
memory cells that belong to the bad columns of the
NAND flash memory array;

sending the input data unit to the NAND flash memory unit
and instructing the NAND flash memory unitto write the
input data unit to a first portion of the NAND flash
memory array to provide a programmed data unit;

sending the bad column mapped data bits to the NAND
flash memory unit;

instructing the NAND flash memory unit to write the bad

column mapped data bits to a second portion of the
NAND flash memory array to provide programmed bad
column mapped data bits; and

wherein the first and second portions of the NAND flash

memory array belong to a same physical page of the
NAND flash memory array.

11. A system, comprising a memory controller that com-
prises a

control circuit and an interface;

wherein the control circuit is arranged to receive or gener-

ate bad columns information indicative of bad columns
of the NAND flash memory array on a column to col-
umns basis;

wherein the memory controller is arranged to receive an

input data unit to be written to the NAND flash memory
array; wherein the input data unit comprises bad column
mapped data bits that are mapped to flash memory cells
that belong to the bad columns of the NAND flash
memory array;

wherein the interface is arranged to:

send the input data unit to the NAND flash memory unit;

instruct the NAND flash memory unit to write the input
data unit to a first portion of the NAND flash memory
array to provide a programmed data unit;

send the bad column mapped data bits to the NAND
flash memory unit;

instruct the NAND flash memory unit to write the bad
column mapped data bits to a second portion of the

US 9,348,694 B1

21

NAND flash memory array to provide programmed
bad column mapped data bits; and

wherein the first and second portions of the NAND flash
memory array belong to a same physical page of the
NAND flash memory array.

12. The system according to claim 11 wherein the control
circuit is arranged to store the bad column mapped data bits at
abad column mapped memory unit of the memory controller.

13. The system according to claim 11 wherein the control
circuit is arranged to detect the bad column mapped data bits
in response to a first data structure that maps the flash memory
cells of the bad columns to locations of the bad column
mapped data bits within the input data unit.

14. The system according to claim 11 wherein the control
circuit is arranged to store at the NAND flash memory unit a
first data structure that maps the flash memory cells of the bad
columns to locations of the bad column mapped data bits and
a second data structure that maps codewords to (i) content of
the second portion of the NAND flash memory array and to
(ii) entries of the first data structure.

15. The system according to claim 11 wherein the control
circuit is arranged to read from the first portion of the NAND
flash memory unit the programmed input data unit to provide
aread data unit; apply an error correction process on the read
data unit to provide error correction results; and determine
whether to read the programmed bad column mapped data
bits in response to the error correction results.

10

15

20

25

22

16. The system according to claim 15 wherein the control
circuit is arranged to read the programmed bad column
mapped data bits to provide read bad column mapped data
bits; and generate an output data unit in response to the read
data unit and the read bad column mapped data bits.

17. The system according to claim 16 wherein the control
circuit is arranged to the generate the output data unit by
replacing bits of the read data unit that were mapped to flash
memory units of bad columns by read bad column mapped
data bits.

18. The system according to claim 16, wherein the control
circuit is arranged to detect bits of the read data unit that were
mapped to flash memory units of bad columns by accessing a
first data structure that maps flash memory cells of bad col-
umns to locations of bad column mapped data bits within the
input data unit.

19. The system according to claim 16, wherein the read
data unit is associated with a certain codeword out of multiple
codewords; wherein the control circuit is arranged to detect
bits of the read data unit that belong to the certain codeword
by accessing a first data structure that maps flash memory
cells of bad columns to locations of bad column mapped data
bits and by accessing a second data structure that maps code-
words to (1) content of the second portion of the NAND flash
memory array and to (ii) entries of the first data structure.

#* #* #* #* #*

